Recent advances have shown that SNN-based systems can efficiently perform unsupervised continual learning due to their bio-plausible learning rule, e.g., Spike-Timing-Dependent Plasticity (STDP). Such learning capabilities are especially beneficial for use cases like autonomous agents (e.g., robots and UAVs) that need to continuously adapt to dynamically changing scenarios/environments, where new data gathered directly from the environment may have novel features that should be learned online. Current state-of-the-art works employ high-precision weights (i.e., 32 bit) for both training and inference phases, which pose high memory and energy costs thereby hindering efficient embedded implementations of such systems for battery-driven mobile autonomous systems. On the other hand, precision reduction may jeopardize the quality of unsupervised continual learning due to information loss. Towards this, we propose lpSpikeCon, a novel methodology to enable low-precision SNN processing for efficient unsupervised continual learning on resource-constrained autonomous agents/systems. Our lpSpikeCon methodology employs the following key steps: (1) analyzing the impacts of training the SNN model under unsupervised continual learning settings with reduced weight precision on the inference accuracy; (2) leveraging this study to identify SNN parameters that have a significant impact on the inference accuracy; and (3) developing an algorithm for searching the respective SNN parameter values that improve the quality of unsupervised continual learning. The experimental results show that our lpSpikeCon can reduce weight memory of the SNN model by 8x (i.e., by judiciously employing 4-bit weights) for performing online training with unsupervised continual learning and achieve no accuracy loss in the inference phase, as compared to the baseline model with 32-bit weights across different network sizes.


翻译:最近的进步表明,基于 SNN 的系统可以高效地进行不受监督的连续学习,因为其生物可接受学习规则,例如Spik-Timing-Depported可塑性(STDP)等。这种学习能力对于诸如自主代理(如机器人和UAVs)等需要不断适应动态变化的情景/环境,需要不断适应动态变化的情景/环境,而从环境直接收集的新数据可能具有新特点,因此可以在网上学习。目前,以SNNNE为主的精度工程在培训和发酵阶段都采用高精度的参数(即,32位),从而带来高的内存和能源成本,从而妨碍在电池驱动的移动自主系统(SST)。另一方面,精确度降低可能危及由于信息损失而需要持续不断不断学习的质量。为此,我们建议使用 lpSpikikeCon, 一种新模式,使低精度 SNNNE处理能够通过不受控制的自动代理代理/系统进行高效的不断学习。我们IPSBniflical 的精度学习系统,在Sniflical Deal Stal Studal Delearnial Deal Deal Dele lading 方法下进行一项关键步骤分析。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月10日
Arxiv
0+阅读 · 2022年7月10日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员