We deal with a long-standing problem about how to design an energy-stable numerical scheme for solving the motion of a closed curve under {\sl anisotropic surface diffusion} with a general anisotropic surface energy $\gamma(\boldsymbol{n})$ in two dimensions, where $\boldsymbol{n}$ is the outward unit normal vector. By introducing a novel symmetric positive definite surface energy matrix $Z_k(\boldsymbol{n})$ depending on the Cahn-Hoffman $\boldsymbol{\xi}$-vector and a stabilizing function $k(\boldsymbol{n})$, we first reformulate the anisotropic surface diffusion into a conservative form and then derive a new symmetrized variational formulation for the anisotropic surface diffusion with weakly or strongly anisotropic surface energies. A semi-discretization in space for the symmetrized variational formulation is proposed and its area (or mass) conservation and energy dissipation are proved. The semi-discretization is then discretized in time by either an implicit structural-preserving scheme (SP-PFEM) which preserves the area in the discretized level or a semi-implicit energy-stable method (ES-PFEM) which needs only solve a linear system at each time step. Under a relatively simple and mild condition on $\gamma(\boldsymbol{n})$, we show that both SP-PFEM and ES-PFEM are unconditionally energy-stable for almost all anisotropic surface energies $\gamma(\boldsymbol{n})$ arising in practical applications. Specifically, for several commonly-used anisotropic surface energies, we construct $Z_k(\boldsymbol{n})$ explicitly. Finally, extensive numerical results are reported to demonstrate the high performance of the proposed numerical schemes.
翻译:我们处理的一个长期问题是如何设计出一种能源稳定的数字方案, 解决在 =================================================================================================================================g===============================================================================================================================================