We aim to bridge the gap between typical human and machine-learning environments by extending the standard framework of few-shot learning to an online, continual setting. In this setting, episodes do not have separate training and testing phases, and instead models are evaluated online while learning novel classes. As in the real world, where the presence of spatiotemporal context helps us retrieve learned skills in the past, our online few-shot learning setting also features an underlying context that changes throughout time. Object classes are correlated within a context and inferring the correct context can lead to better performance. Building upon this setting, we propose a new few-shot learning dataset based on large scale indoor imagery that mimics the visual experience of an agent wandering within a world. Furthermore, we convert popular few-shot learning approaches into online versions and we also propose a new contextual prototypical memory model that can make use of spatiotemporal contextual information from the recent past.
翻译:我们的目标是缩小典型的人类和机器学习环境之间的差距,将少发学习的标准框架扩展至在线、持续的环境。在这一背景下,片段没有单独的培训和测试阶段,而是在学习新颖课程的同时对模型进行在线评估。像现实世界一样,在现实世界中,由于存在时空空间环境,我们在过去可以找到学习技能,我们的在线少发学习设置也具有一个长期变化的基础背景。对象类在上下文中相互关联,并推断正确的背景可以导致更好的业绩。在此背景下,我们提议基于大型室内图像的新的少发学习数据集,以模拟一个在世界上游荡的代理人的视觉经验。此外,我们把流行的少发学习方法转换成在线版本,我们还提出一个新的背景准图案记忆模型,可以利用最近发生的多发背景信息。