In this paper, we explore the task of automatically generating natural language descriptions of salient patterns in a time series, such as stock prices of a company over a week. A model for this task should be able to extract high-level patterns such as presence of a peak or a dip. While typical contemporary neural models with attention mechanisms can generate fluent output descriptions for this task, they often generate factually incorrect descriptions. We propose a computational model with a truth-conditional architecture which first runs small learned programs on the input time series, then identifies the programs/patterns which hold true for the given input, and finally conditions on only the chosen valid program (rather than the input time series) to generate the output text description. A program in our model is constructed from modules, which are small neural networks that are designed to capture numerical patterns and temporal information. The modules are shared across multiple programs, enabling compositionality as well as efficient learning of module parameters. The modules, as well as the composition of the modules, are unobserved in data, and we learn them in an end-to-end fashion with the only training signal coming from the accompanying natural language text descriptions. We find that the proposed model is able to generate high-precision captions even though we consider a small and simple space of module types.


翻译:在本文中, 我们探索了在时间序列中自动生成突出模式的自然语言描述的任务, 如公司一周的股票价格。 任务模型应该能够提取高层次模式, 如峰值或底值的存在。 典型的当代神经模型和关注机制可以产生流畅的输出描述, 它们往往产生不真实的描述。 我们提出了一个计算模型, 包含一个真实条件的架构, 它首先在输入时间序列上运行小的学习程序, 然后确定对给定输入真实的程序/ 模式, 并且只有选择的有效程序( 而不是输入时间序列) 才能最终产生输出文本描述。 我们模型中的一个程序来自模块, 是小型的神经网络, 设计来捕捉数字模式和时间信息。 这些模块在多个程序中共享, 能够组成以及高效地学习模块参数。 模块以及模块的构成在数据中是无法观察到的, 我们以最终到它们的方式学习它们, 唯一的培训信号来自随附的自然语言版图示的模块。 我们发现, 高的模型是能够生成的。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Hierarchy Parsing for Image Captioning
Arxiv
6+阅读 · 2019年9月10日
Neural Image Captioning
Arxiv
5+阅读 · 2019年7月2日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Hierarchy Parsing for Image Captioning
Arxiv
6+阅读 · 2019年9月10日
Neural Image Captioning
Arxiv
5+阅读 · 2019年7月2日
Arxiv
11+阅读 · 2018年5月13日
Top
微信扫码咨询专知VIP会员