Being able to efficiently retrieve the required building information is critical for construction project stakeholders to carry out their engineering and management activities. Natural language interface (NLI) systems are emerging as a time and cost-effective way to query Building Information Models (BIMs). However, the existing methods cannot logically combine different constraints to perform fine-grained queries, dampening the usability of natural language (NL)-based BIM queries. This paper presents a novel ontology-aided semantic parser to automatically map natural language queries (NLQs) that contain different attribute and relational constraints into computer-readable codes for querying complex BIM models. First, a modular ontology was developed to represent NL expressions of Industry Foundation Classes (IFC) concepts and relationships, and was then populated with entities from target BIM models to assimilate project-specific information. Hereafter, the ontology-aided semantic parser progressively extracts concepts, relationships, and value restrictions from NLQs to fully identify constraint conditions, resulting in standard SPARQL queries with reasoning rules to successfully retrieve IFC-based BIM models. The approach was evaluated based on 225 NLQs collected from BIM users, with a 91% accuracy rate. Finally, a case study about the design-checking of a real-world residential building demonstrates the practical value of the proposed approach in the construction industry.


翻译:能够有效地检索所需的建筑信息对于建筑项目的利益相关者来说是至关重要的,自然语言接口(NLI)系统正在成为查询建筑信息模型(BIM)的一种省时、省费的方式。然而,现有的方法无法逻辑地组合不同的约束条件以执行细粒度的查询,这抑制了基于自然语言(NL)的BIM查询的可用性。本文提出了一种新颖的本体辅助语义解析器,可以自动将包含不同属性和关系约束的自然语言查询(NLQ)映射到计算机可读代码,以查询复杂的BIM模型。首先,开发了一个模块化本体,用于表示行业基础类(IFC)概念和关系的NL表达式,并且随后填充了来自目标BIM模型的实体,以吸收项目特定的信息。此后,本体辅助语义解析器逐步从NLQ中提取概念、关系和值限制,以全面识别约束条件,从而生成具有推理规则的标准SPARQl查询,以成功检索基于IFC的BIM模型。该方法基于来自BIM用户的225个NLQ进行了评估,准确率为91%。最后,通过一个关于设计检查一个真实住宅建筑的案例研究,展示了所提出方法在建筑行业中的实用价值。

0
下载
关闭预览

相关内容

知识增强预训练语言模型:全面综述
专知会员服务
89+阅读 · 2021年10月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
论文浅尝 | Neural-Symbolic Models for Logical Queries on KG
开放知识图谱
0+阅读 · 2022年10月31日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
论文小综 | Using External Knowledge on VQA
开放知识图谱
10+阅读 · 2020年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文浅尝 | 基于知识图谱子图匹配以回答自然语言问题
开放知识图谱
25+阅读 · 2018年6月26日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
18+阅读 · 2020年10月9日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关VIP内容
知识增强预训练语言模型:全面综述
专知会员服务
89+阅读 · 2021年10月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
论文浅尝 | Neural-Symbolic Models for Logical Queries on KG
开放知识图谱
0+阅读 · 2022年10月31日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
论文小综 | Using External Knowledge on VQA
开放知识图谱
10+阅读 · 2020年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文浅尝 | 基于知识图谱子图匹配以回答自然语言问题
开放知识图谱
25+阅读 · 2018年6月26日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员