Federated learning is increasingly being explored in the field of medical imaging to train deep learning models on large scale datasets distributed across different data centers while preserving privacy by avoiding the need to transfer sensitive patient information. In this manuscript, we explore federated learning in a multi-domain, multi-task setting wherein different participating nodes may contain datasets sourced from different domains and are trained to solve different tasks. We evaluated cross-domain federated learning for the tasks of object detection and segmentation across two different experimental settings: multi-modal and multi-organ. The result from our experiments on cross-domain federated learning framework were very encouraging with an overlap similarity of 0.79 for organ localization and 0.65 for lesion segmentation. Our results demonstrate the potential of federated learning in developing multi-domain, multi-task deep learning models without sharing data from different domains.


翻译:联邦学习正在医学成像领域越来越多地探索,以培训关于分布在不同数据中心的大型数据集的深层次学习模型,同时通过避免转移敏感的病人信息来保护隐私。在这份手稿中,我们探索在多领域、多任务环境中的联邦学习,其中不同的参与节点可能包含来自不同领域的数据集,并受过解决不同任务的培训。我们评估了在多种模式和多机等两个不同实验环境中的物体探测和分解任务跨部的跨部联合学习模型。我们跨部联合学习框架实验的结果非常令人鼓舞,在器官局部化方面重叠0.79, 损伤分解方面重叠0.65。我们的结果表明,在不分享不同领域数据的情况下,在开发多部、多任务深度学习模型方面,联邦学习的潜力是巨大的。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
1+阅读 · 2022年2月18日
Arxiv
10+阅读 · 2021年3月30日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员