In this work we propose a new paradigm of iterative model-based reconstruction algorithms for providing real-time solution for zooming-in and refining a region of interest in medical and clinical tomographic (such as CT/MRI/PET, etc) images. This algorithmic framework is tailor for a clinical need in medical imaging practice, that after a reconstruction of the full tomographic image, the clinician may believe that some critical parts of the image are not clear enough, and may wish to see clearer these regions-of-interest. A naive approach (which is highly not recommended) would be performing the global reconstruction of a higher resolution image, which has two major limitations: firstly, it is computationally inefficient, and secondly, the image regularization is still applied globally which may over-smooth some local regions. Furthermore if one wish to fine-tune the regularization parameter for local parts, it would be computationally infeasible in practice for the case of using global reconstruction. Our new iterative approaches for such tasks are based on jointly utilizing the measurement information, efficient upsampling/downsampling across image spaces, and locally adjusted image prior for efficient and high-quality post-processing. The numerical results in low-dose X-ray CT image local zoom-in demonstrate the effectiveness of our approach.


翻译:在这项工作中,我们提出了一种新的模式性迭代模型重建算法范例,为放大和完善一个对医学和临床摄影(如CT/MRI/PET等)图像感兴趣的区域提供实时解决办法,为放大和完善一个区域提供实时解决办法。这一算法框架针对医学成像实践的临床需要而设计,即在整幅成像图像重建后,临床医生可能认为图像的某些关键部分不够清楚,并可能希望更清楚地看到这些利益区域。一种天真的方法(高度不推荐)将进行高分辨率图像的全球重建,该方法有两个主要的局限性:第一,是计算效率低,第二,图像正规化仍然在全球应用,可能超过某些地方的临床需要。此外,如果有人想对局部部分的正规化参数进行微调,那么在使用全球重建的情况下,这种图像的某些关键部分将难以在实际中进行计算。我们这种任务的新的迭代方法将基于共同利用测量信息、高效的上层/下层取样,以及地方图像在图像空间进行两种主要限制:首先是计算效率低效率的,然后是地方图像在数字和高质量的图像处理中进行X。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员