Heteroscedastic regression models a Gaussian variable's mean and variance as a function of covariates. Parametric methods that employ neural networks for these parameter maps can capture complex relationships in the data. Yet, optimizing network parameters via log likelihood gradients can yield suboptimal mean and uncalibrated variance estimates. Current solutions side-step this optimization problem with surrogate objectives or Bayesian treatments. Instead, we make two simple modifications to optimization. Notably, their combination produces a heteroscedastic model with mean estimates that are provably as accurate as those from its homoscedastic counterpart (i.e.~fitting the mean under squared error loss). For a wide variety of network and task complexities, we find that mean estimates from existing heteroscedastic solutions can be significantly less accurate than those from an equivalently expressive mean-only model. Our approach provably retains the accuracy of an equally flexible mean-only model while also offering best-in-class variance calibration. Lastly, we show how to leverage our method to recover the underlying heteroscedastic noise variance.
翻译:高斯变数的偏差回归模型 高斯变数的平均值和差异是共变函数的函数 。 使用神经网络绘制这些参数映射的参数方法可以捕捉数据中的复杂关系 。 然而, 通过日志概率梯度优化网络参数可以产生亚最佳平均值和未经校准的差异估计值。 目前的解决办法在代谢目标或贝叶斯治疗方法中将这种优化问题抛在一边。 相反, 我们对优化做了两个简单的修改 。 值得注意的是, 它们的组合产生了一个超优度模型, 其平均估计值可以与同质对应方的估算值一样准确( 与平方差损失的平均值相匹配 ) 。 对于广泛的网络和任务复杂性, 我们发现, 从现有的超度解决方案中得出的平均估计值可能大大低于对等的显性平均模型的准确度。 我们的方法可以明显保留一个同样灵活、 平均的模型的准确性, 同时提供最精确的级差异校准。 最后, 我们指出如何利用我们的方法来恢复潜在的超度噪音差异。