This study targets the mixed-integer black-box optimization (MI-BBO) problem where continuous and integer variables should be optimized simultaneously. The CMA-ES, our focus in this study, is a population-based stochastic search method that samples solution candidates from a multivariate Gaussian distribution (MGD), which shows excellent performance in continuous BBO. The parameters of MGD, mean and (co)variance, are updated based on the evaluation value of candidate solutions in the CMA-ES. If the CMA-ES is applied to the MI-BBO with straightforward discretization, however, the variance corresponding to the integer variables becomes much smaller than the granularity of the discretization before reaching the optimal solution, which leads to the stagnation of the optimization. In particular, when binary variables are included in the problem, this stagnation more likely occurs because the granularity of the discretization becomes wider, and the existing modification to the CMA-ES does not address this stagnation. To overcome these limitations, we propose a simple modification of the CMA-ES based on lower-bounding the marginal probabilities associated with the generation of integer variables in the MGD. The numerical experiments on the MI-BBO benchmark problems demonstrate the efficiency and robustness of the proposed method.
翻译:本研究针对的是混合整数黑箱优化(MI-BBO)问题,即连续和整数变量应同时优化的问题。本研究的焦点是CMA-ES(CMA-ES),它是一种基于人口的随机搜索方法,通过这种方法,从多变量高斯分布(MGD)中抽样解决候选者,在连续的BBO中表现优异。MGD(平均和(共同)差异)的参数是根据CMA-ES(CMA-ES)中候选解决方案的评价价值更新的。但是,如果CMA-ES(CMA-ES)应用到MIBO(直接分解),那么,与整数变量相对应的差异会小于离散变的颗粒性,然后达成最佳解决方案,从而导致优化停滞。特别是,当将二进变量纳入问题时,这种停滞更有可能发生,因为离裂变变的颗粒性更大,而目前对CMA-ES(C-ES)的修改并不能解决这种停滞问题。为了克服这些限制,我们建议对CMA-ES(C-ES)进行简单的修改,以较低伸缩为基础,其基础的准性概率概率概率比准性,从而显示MB(MGD)的模型的精确性基准的模型的模型的概率性变数。