NeuroEvolution automates the generation of Artificial Neural Networks through the application of techniques from Evolutionary Computation. The main goal of these approaches is to build models that maximize predictive performance, sometimes with an additional objective of minimizing computational complexity. Although the evolved models achieve competitive results performance-wise, their robustness to adversarial examples, which becomes a concern in security-critical scenarios, has received limited attention. In this paper, we evaluate the adversarial robustness of models found by two prominent NeuroEvolution approaches on the CIFAR-10 image classification task: DENSER and NSGA-Net. Since the models are publicly available, we consider white-box untargeted attacks, where the perturbations are bounded by either the L2 or the Linfinity-norm. Similarly to manually-designed networks, our results show that when the evolved models are attacked with iterative methods, their accuracy usually drops to, or close to, zero under both distance metrics. The DENSER model is an exception to this trend, showing some resistance under the L2 threat model, where its accuracy only drops from 93.70% to 18.10% even with iterative attacks. Additionally, we analyzed the impact of pre-processing applied to the data before the first layer of the network. Our observations suggest that some of these techniques can exacerbate the perturbations added to the original inputs, potentially harming robustness. Thus, this choice should not be neglected when automatically designing networks for applications where adversarial attacks are prone to occur.


翻译:神经进化使人造神经网络的生成自动化。 这些方法的主要目标是通过应用进化计算法的技术来建立能够最大限度地提高预测性能的模型,有时还有将计算复杂性降到最低的附加目标。 虽然进化模型在竞争性结果性能方面实现了竞争力性能,但它们对竞争性实例的稳健性却受到了有限的关注。 在本文件中,我们评估了在CIFAR-10图像分类任务(DENSER和NSGA-Net)中两种突出的神经进化方法发现的模式的对抗性强性。由于模型是公开的,我们考虑的是白箱非目标性应用程序,在这些模型中,扰动性受到L2或Linfinity-Norm的束缚。与人工设计的网络类似,我们的结果表明,在进化模型受到迭代方法攻击时,其准确性通常下降到或接近于两种距离度的零。 DENSER模式是这一趋势的例外,表明L2威胁下存在一些阻力,在L2模型下,其选择性应用程序的准确性不是为93.70 %,在网络之前,我们只能将原始的进度观测结果推至18.10,因此,因此,这些变压技术可以分析这些变压。 这些变压。 这些变压技术。 这些变压。 这些变压。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员