Training vision-based Urban Autonomous driving models is a challenging problem, which is highly researched in recent times. Training such models is a data-intensive task requiring the storage and processing of vast volumes of (possibly redundant) driving video data. In this paper, we study the problem of developing data-efficient autonomous driving systems. In this context, we study the problem of multi-criteria online video frame subset selection. We study convex optimization-based solutions and show that they are unable to provide solutions with high weightage to the loss of selected video frames. We design a novel convex optimization-based multi-criteria online subset selection algorithm that uses a thresholded concave function of selection variables. We also propose and study a submodular optimization-based algorithm. Extensive experiments using the driving simulator CARLA show that we are able to drop 80% of the frames while succeeding to complete 100% of the episodes w.r.t. the model trained on 100% data, in the most difficult task of taking turns. This results in a training time of less than 30% compared to training on the whole dataset. We also perform detailed experiments on prediction performances of various affordances used by the Conditional Affordance Learning (CAL) model and show that our subset selection improves performance on the crucial affordance "Relative Angle" during turns.


翻译:培训城市自主驱动模型是一个具有挑战性的问题,最近曾对此进行过大量研究。培训这些模型是一个数据密集型任务,需要存储和处理大量(可能多余的)驱动视频数据。在本文中,我们研究了开发数据高效自主驱动系统的问题。在这方面,我们研究了多标准在线视频框架子集选择问题。我们研究了基于配置优化的优化解决方案,并表明它们无法为失去选定视频框架提供高重量的解决方案。我们设计了一个新型的康韦克斯优化型多标准在线子集子选择算法,该算法使用选择变量的临界组合功能。我们还提出并研究一个亚模式优化型算法。使用驱动模拟器CARLA进行的广泛实验表明,在完成100%的视频框架选择过程中,我们能够降低80%的框。我们研究了百分率数据培训的模型,这是最困难的任务。我们设计了一个比整个数据集培训低30%的培训时间。我们还进行了详细测试,还利用了一种以亚值为基础的模型,用于预测“在模型中改进了各种业绩”。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员