Domain Adaptation (DA) has recently raised strong interests in the medical imaging community. While a large variety of DA techniques has been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems. To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality DA. The challenge's goal is to segment two key brain structures involved in the follow-up and treatment planning of vestibular schwannoma (VS): the VS and the cochleas. Currently, the diagnosis and surveillance in patients with VS are performed using contrast-enhanced T1 (ceT1) MRI. However, there is growing interest in using non-contrast sequences such as high-resolution T2 (hrT2) MRI. Therefore, we created an unsupervised cross-modality segmentation benchmark. The training set provides annotated ceT1 (N=105) and unpaired non-annotated hrT2 (N=105). The aim was to automatically perform unilateral VS and bilateral cochlea segmentation on hrT2 as provided in the testing set (N=137). A total of 16 teams submitted their algorithm for the evaluation phase. The level of performance reached by the top-performing teams is strikingly high (best median Dice - VS:88.4%; Cochleas:85.7%) and close to full supervision (median Dice - VS:92.5%; Cochleas:87.7%). All top-performing methods made use of an image-to-image translation approach to transform the source-domain images into pseudo-target-domain images. A segmentation network was then trained using these generated images and the manual annotations provided for the source image.
翻译:域适应( DA) 最近提高了医学成像界的浓厚兴趣。 虽然为图像分割提出了大量的 DA 技术, 但大多数这些技术已经在私人数据集或小的公开数据集上得到验证。 此外, 这些数据集大多解决单级问题。 为了解决这些限制, 交叉模式适应( CrossMoDA) 挑战是与第24届医学图像计算和计算机辅助干预国际会议( MICCAI 2021) 联合组织的。 跨摩多DA 是第一个大型和多级的DA 技术, 未监督的跨式模式 DA。 大部分这些技术已被在私人数据集或小的公开数据集上验证。 此外, 这些数据集主要用于跟踪和治疗前一级 S: VS 和 Cochleasion 。 目前, VS 患者的诊断和监控程序是使用对比强化的 T1 (ceT1) MRI 。 然而, 使用非连续式序列, 如高分辨率解的 T2 (hret) MRI 。 因此, 我们创建了一个高级的 Slodeal 级 Sal deal develrial= a creal oral oration ortial oration oration oration ortial ortical dreal dreal dreal dreal dreal drealatedddddddddddddd ex exaldaldaldaldaldaldaldalddaldaldaldaldaldaldaldaldaldddddddaldaldaldaldaldaldaldaldaldaldaldaldaldddddddddaldaldaldalddaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldddaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald,,,, ex