Legal judgment prediction(LJP) is an essential task for legal AI. While prior methods studied on this topic in a pseudo setting by employing the judge-summarized case narrative as the input to predict the judgment, neglecting critical case life-cycle information in real court setting could threaten the case logic representation quality and prediction correctness. In this paper, we introduce a novel challenging dataset from real courtrooms to predict the legal judgment in a reasonably encyclopedic manner by leveraging the genuine input of the case -- plaintiff's claims and court debate data, from which the case's facts are automatically recognized by comprehensively understanding the multi-role dialogues of the court debate, and then learnt to discriminate the claims so as to reach the final judgment through multi-task learning. An extensive set of experiments with a large civil trial data set shows that the proposed model can more accurately characterize the interactions among claims, fact and debate for legal judgment prediction, achieving significant improvements over strong state-of-the-art baselines. Moreover, the user study conducted with real judges and law school students shows the neural predictions can also be interpretable and easily observed, and thus enhancing the trial efficiency and judgment quality.


翻译:法律判决预测(LJP)是法律大赦国际的一项基本任务。虽然以前通过使用法官概括的案件叙述作为预测判决的投入,在假环境中研究过有关这一专题的方法,但在实际法院环境中忽视关键案件生命周期信息会威胁案件逻辑陈述质量和预测正确性。 在本文中,我们引入了一套具有挑战性的新型真实法庭数据集,通过利用案件真实投入 -- -- 原告的主张和法院辩论数据 -- -- 来合理包罗万象地预测法律判决。 原告的主张和法院辩论数据,通过全面理解法院辩论的多功能对话,使案件的事实自动得到承认,然后学会歧视索赔,以便通过多任务学习达成最后判决。一套广泛的民事审判数据集实验表明,拟议的模型可以更准确地描述索赔、事实和辩论之间的相互作用,用于法律判决预测,从而在坚实的基线方面实现重大改进。此外,与实际法官和法学院学生进行的用户研究显示,神经预测也可以被解释和容易观察,从而提高审判效率和判决质量。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Type-augmented Relation Prediction in Knowledge Graphs
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员