In this work, we consider the problem of minimising the social cost in atomic congestion games. For this problem, we provide tight computational lower bounds along with taxation mechanisms yielding polynomial time algorithms with optimal approximation. Perhaps surprisingly, our results show that indirect interventions, in the form of efficiently computed taxation mechanisms, yield the same performance achievable by the best polynomial time algorithm, even when the latter has full control over the agents' actions. It follows that no other tractable approach geared at incentivizing desirable system behavior can improve upon this result, regardless of whether it is based on taxations, coordination mechanisms, information provision, or any other principle. In short: Judiciously chosen taxes achieve optimal approximation. Three technical contributions underpin this conclusion. First, we show that computing the minimum social cost is NP-hard to approximate within a given factor depending solely on the admissible resource costs. Second, we design a tractable taxation mechanism whose efficiency (price of anarchy) matches this hardness factor, and thus is worst-case optimal. As these results extend to coarse correlated equilibria, any no-regret algorithm inherits the same performances, allowing us to devise polynomial time algorithms with optimal approximation.
翻译:在这项工作中,我们考虑在原子拥堵游戏中将社会成本最小化的问题。 对于这个问题,我们提供严格的计算下限,同时提供能产生最优近效的多元时间算法的税收机制。也许令人惊讶的是,我们的结果显示,以高效计算税收机制的形式进行的间接干预,产生最佳多元时间算法所能达到的相同业绩,即使后者完全控制代理人的行动,也如此。由此可见,任何旨在激励理想系统行为的其他可移植方法都无法从这个结果中得到改善,而不论它是否基于税收、协调机制、信息提供或任何其他原则。简而言之:明智选择的税收达到最佳近似值。三种技术贡献是这一结论的基础。首先,我们表明,计算最低社会成本很难在某一特定因素中估计,仅取决于可接受的资源成本。第二,我们设计了一个可移植的税收机制,其效率(无政府主义价格)与这一硬性因素相匹配,因此是最坏的情况最佳的。这些结果延伸到了混为一对准的对应的平衡性,任何无悔不折不折不改的算法,任何不折算法和最优劣性最接近性的最新性。