Bayesian hierarchical models are well-suited to analyzing the often noisy data from electroencephalography experiments in cognitive neuroscience: these models provide an intuitive framework to account for structures and correlations in the data, and they allow a straightforward handling of uncertainty. In a typical neurolinguistic experiment, event-related potentials show only very small effect sizes and frequentist approaches to data analysis fail to establish the significance of some of these effects. Here, we present a Bayesian approach to analyzing event-related potentials using as an example data from an experiment which relates word surprisal and neural response. Our model is able to estimate the effect of word surprisal on most components of the event-related potential and provides a richer description of the data. The Bayesian framework also allows easier comparison between estimates based on surprisal values calculated using different language models.
翻译:贝叶斯等级模型非常适合分析认知神经科学中电脑物理学实验中经常噪音的数据:这些模型提供了一个直观的框架来说明数据的结构和相关性,它们可以直接处理不确定性。在典型的神经语言实验中,与事件有关的潜力仅显示很小的影响大小,对数据分析的常客主义方法未能确定其中一些影响的意义。在这里,我们提出了一个贝叶斯式的方法,用来分析与事件有关的潜力,将一个实验的数据作为示例,该实验涉及的是超常和神经反应。我们的模型能够估计超常词对与事件有关潜力的大多数组成部分的影响,并对数据作出更丰富的描述。贝叶斯框架还使得比较基于使用不同语言模型计算的超常值的估计数更为容易。