Relating entities and events in text is a key component of natural language understanding. Cross-document coreference resolution, in particular, is important for the growing interest in multi-document analysis tasks. In this work we propose a new model that extends the efficient sequential prediction paradigm for coreference resolution to cross-document settings and achieves competitive results for both entity and event coreference while provides strong evidence of the efficacy of both sequential models and higher-order inference in cross-document settings. Our model incrementally composes mentions into cluster representations and predicts links between a mention and the already constructed clusters, approximating a higher-order model. In addition, we conduct extensive ablation studies that provide new insights into the importance of various inputs and representation types in coreference.
翻译:在文本中将实体和活动联系起来是自然语言理解的一个关键组成部分。交叉文件共同参考决议对于人们日益关注多文件分析任务尤为重要。在这项工作中,我们提出了一个新的模型,将高效的顺序预测模式扩大到交叉文件设置,使共同解决方法与交叉文件设置相提并论,并为实体和事件共同参照取得竞争性结果,同时为交叉文件设置中的先后模式和较高等级推论的有效性提供有力的证据。我们的模型在递增中提及分组表述,并预测提及和已经构建的集群之间的联系,与更高等级模式相近。此外,我们开展了广泛的调整研究,为各种投入和代表类型在共同参照中的重要性提供了新的见解。