To improve the explainability of leading Transformer networks used in NLP, it is important to tease apart genuine symbolic rules from merely associative input-output patterns. However, we identify several inconsistencies in how ``symbolicity'' has been construed in recent NLP literature. To mitigate this problem, we propose two criteria to be the most relevant, one pertaining to a system's internal architecture and the other to the dissociation between abstract rules and specific input identities. From this perspective, we critically examine prior work on the symbolic capacities of Transformers, and deem the results to be fundamentally inconclusive for reasons inherent in experiment design. We further maintain that there is no simple fix to this problem, since it arises -- to an extent -- in all end-to-end settings. Nonetheless, we emphasize the need for more robust evaluation of whether non-symbolic explanations exist for success in seemingly symbolic tasks. To facilitate this, we experiment on four sequence modelling tasks on the T5 Transformer in two experiment settings: zero-shot generalization, and generalization across class-specific vocabularies flipped between the training and test set. We observe that T5's generalization is markedly stronger in sequence-to-sequence tasks than in comparable classification tasks. Based on this, we propose a thus far overlooked analysis, where the Transformer itself does not need to be symbolic to be part of a symbolic architecture as the processor, operating on the input and output as external memory components.


翻译:为了改进NLP使用的主要变压器网络的解释性,重要的是要将真正的象征性规则与纯粹连带投入输出模式分开。 然而,我们发现在最近的NLP文献中对“同义主义”的解释中存在若干不一致之处。为了缓解这一问题,我们建议两个标准最为相关,一个标准与系统的内部结构有关,另一个标准与抽象规则与具体输入特性脱钩有关。从这个角度,我们严格审查先前关于变压器象征性能力的工作,认为由于实验设计中固有的原因,其结果基本上没有结论性。我们进一步坚持认为,这个问题没有简单的解决办法,因为在所有端到端的文献中都出现了——在某种程度上——“同义主义”的解释。然而,我们强调,需要更有力地评价是否存在着非同义的解释性解释,以在表面上的象征性任务中取得成功。为了便利这一点,我们试验T5变压变器上的四个序列模拟任务:零光谱化,以及由于在试验设计中各部分之间发生反转动的阶级口音,结果基本上没有结论性。我们进一步认为,这个问题没有简单的解决办法,因为在所有端到最后的内,我们观察到,在象征性的变压式结构中,因此,我们需要有一个明显的结构本身是更强烈的。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
32+阅读 · 2022年12月20日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员