X-ray fluorescence spectroscopy (XRF) plays an important role for elemental analysis in a wide range of scientific fields, especially in cultural heritage. XRF imaging, which uses a raster scan to acquire spectra across artworks, provides the opportunity for spatial analysis of pigment distributions based on their elemental composition. However, conventional XRF-based pigment identification relies on time-consuming elemental mapping by expert interpretations of measured spectra. To reduce the reliance on manual work, recent studies have applied machine learning techniques to cluster similar XRF spectra in data analysis and to identify the most likely pigments. Nevertheless, it is still challenging for automatic pigment identification strategies to directly tackle the complex structure of real paintings, e.g. pigment mixtures and layered pigments. In addition, pixel-wise pigment identification based on XRF imaging remains an obstacle due to the high noise level compared with averaged spectra. Therefore, we developed a deep-learning-based end-to-end pigment identification framework to fully automate the pigment identification process. In particular, it offers high sensitivity to the underlying pigments and to the pigments with a low concentration, therefore enabling satisfying results in mapping the pigments based on single-pixel XRF spectrum. As case studies, we applied our framework to lab-prepared mock-up paintings and two 19th-century paintings: Paul Gauguin's Po\`emes Barbares (1896) that contains layered pigments with an underlying painting, and Paul Cezanne's The Bathers (1899-1904). The pigment identification results demonstrated that our model achieved comparable results to the analysis by elemental mapping, suggesting the generalizability and stability of our model.
翻译:XRF成像在一系列广泛的科学领域,特别是在文化遗产领域,对元素分析起着重要作用。 XRF成像使用光学扫描来获得艺术作品的光谱,为根据元素成分对颜料分布进行空间分析提供了机会。然而,基于常规XRF的色素识别依靠对测量光谱的专家解释进行时间消耗的元素绘图。为了减少对人工工作的依赖,最近的研究应用了机器学习技术,在数据分析中对类似的XRF色谱进行分组,并查明最有可能的色素。然而,对自动色素识别战略来说,仍然具有挑战性,以便直接处理真实绘画的复杂结构,例如色素混合物和层色素。此外,基于XRF成像的素与素谱的专家解释相比,对于高噪声度的素谱识别工作来说,传统色素的比值仍是一个障碍。因此,我们开发了一个基于深度学习的纸质至终色素标识框架,以完全自动化的颜料识别过程。特别是,自动色素识别战略对于直观的颜色识别战略具有高度敏感性,直接处理真实性结构结构结构,例如色色色调混合物混合物的颜色图解,从而显示我们的底底色结构的底色图的底色图,因此的底部结构分析,从而显示了我们的底部的底部结构结构结构结构结构结构结构结构结构结构结构结构,从而显示了我们的底部的底部的底部的底部的底部的底部的底部的底部的底部的底色结构的底部的底部的底部的底部结构,表明,表明,表明,表明,我们的底部的底部的底部的底部的底部的底部的底部的底部的底部的底部的底部结构结构结构结构结构结构结构结构结构结构结构图。