Human mental processes allow for qualitative reasoning about causality in terms of mechanistic relations of the variables of interest, which we argue are naturally described by structural causal model (SCM). Since interpretations are being derived from mental models, the same applies for SCM. By defining a metric space on SCM, we provide a theoretical perspective on the comparison of mental models and thereby conclude that interpretations can be used for guiding a learning system towards true causality. To this effect, we present a theoretical analysis from first principles that results in a human-readable interpretation scheme consistent with the provided causality that we name structural causal interpretations (SCI). Going further, we prove that any existing neural induction method (NIM) is in fact interpretable. Our first experiment (E1) assesses the quality of such NIM-based SCI. In (E2) we observe evidence for our conjecture on improved sample-efficiency for SCI-based learning. After conducting a small user study, in (E3) we observe superiority in human-based over NIM-based SCI in support of our initial hypothesis.
翻译:人类心理过程允许对利益变数的机理关系的因果关系进行定性推理,我们认为,这种推理自然是由结构性因果模型(SCM)来描述的。由于解释来自精神模型,因此对SCM同样适用。通过界定关于精神模型的衡量空间,我们从理论角度对精神模型的比较提供了一种理论观点,从而得出结论,解释可以用来指导学习系统走向真正的因果性。为此,我们从最初的原则中提出理论分析,得出一种人类可读的解释计划,其结果与我们所给出的结构性因果解释(SCI)所提供的因果关系相一致。接着,我们证明任何现有的神经感应方法(NIS)都是事实上可以解释的。我们的第一个实验(E1)评估了这种基于NM SCI的质量。在(E2)中,我们观察了我们关于改进基于SCI学习的样本效率的推断的证据。在进行小用户研究(E3)之后,我们观察到基于人类的比基于NISI的SCI优越性支持我们最初的假设。