This work addresses hand mesh recovery from a single RGB image. In contrast to most of the existing approaches where the parametric hand models are employed as the prior, we show that the hand mesh can be learned directly from the input image. We propose a new type of GAN called Im2Mesh GAN to learn the mesh through end-to-end adversarial training. By interpreting the mesh as a graph, our model is able to capture the topological relationship among the mesh vertices. We also introduce a 3D surface descriptor into the GAN architecture to further capture the 3D features associated. We experiment two approaches where one can reap the benefits of coupled groundtruth data availability of images and the corresponding meshes, while the other combats the more challenging problem of mesh estimations without the corresponding groundtruth. Through extensive evaluations we demonstrate that the proposed method outperforms the state-of-the-art.
翻译:这项工作从一个 RGB 图像中处理手网格的恢复。 与大多数现有方法相比, 即对准手模型作为前一种使用, 我们显示手网格可以直接从输入图像中学习。 我们建议了一种新型的GAN, 名为 Im2Mesh GAN, 通过端到端对端的对抗训练来学习网格。 通过将网格作为图解, 我们的模型能够捕捉网格螺旋之间的表层关系。 我们还在GAN 结构中引入了 3D 表面描述符, 以进一步捕捉3D 相关特征。 我们实验了两种方法, 一种方法可以从图像和对应的网格中同时获得地面数据的好处, 而另一种方法则在没有相应的地格图的情况下解决网格估计这个更具挑战性的问题。 我们通过广泛的评估来证明, 拟议的方法超越了艺术的状态。