Let $(\Omega, \mu)$, $(\Delta, \nu)$ be measure spaces and $p=1$ or $p=\infty$. Let $(\{f_\alpha\}_{\alpha\in \Omega}, \{\tau_\alpha\}_{\alpha\in \Omega})$ and $(\{g_\beta\}_{\beta\in \Delta}, \{\omega_\beta\}_{\beta\in \Delta})$ be unbounded continuous p-Schauder frames for a Banach space $\mathcal{X}$. Then for every $x \in ( \mathcal{D}(\theta_f) \cap\mathcal{D}(\theta_g))\setminus\{0\}$, we show that \begin{align}\label{UB} (1) \quad \quad \quad \quad \mu(\operatorname{supp}(\theta_f x))\nu(\operatorname{supp}(\theta_g x)) \geq \frac{1}{\left(\displaystyle\sup_{\alpha \in \Omega, \beta \in \Delta}|f_\alpha(\omega_\beta)|\right)\left(\displaystyle\sup_{\alpha \in \Omega , \beta \in \Delta}|g_\beta(\tau_\alpha)|\right)}, \end{align} where \begin{align*} &\theta_f:\mathcal{D}(\theta_f) \ni x \mapsto \theta_fx \in \mathcal{L}^p(\Omega, \mu); \quad \theta_fx: \Omega \ni \alpha \mapsto (\theta_fx) (\alpha):= f_\alpha (x) \in \mathbb{K},\\ &\theta_g: \mathcal{D}(\theta_g) \ni x \mapsto \theta_gx \in \mathcal{L}^p(\Delta, \nu); \quad \theta_gx: \Delta \ni \beta \mapsto (\theta_gx) (\beta):= g_\beta (x) \in \mathbb{K}. \end{align*} We call Inequality (1) as \textbf{Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torr\'{e}sani Uncertainty Principle}. Along with recent \textbf{Functional Continuous Uncertainty Principle} [arXiv:2308.00312], Inequality (1) also improves Ricaud-Torr\'{e}sani uncertainty principle [IEEE Trans. Inform. Theory, 2013]. In particular, it improves Elad-Bruckstein uncertainty principle [IEEE Trans. Inform. Theory, 2002] and Donoho-Stark uncertainty principle [SIAM J. Appl. Math., 1989].
翻译:暂无翻译