Continual learning and few-shot learning are important frontiers in the quest to improve Machine Learning. There is a growing body of work in each frontier, but very little combining the two. Recently however, Antoniou et al. arXiv:2004.11967 introduced a Continual Few-shot Learning framework, CFSL, that combines both. In this study, we extended CFSL to make it more comparable to standard continual learning experiments, where usually a much larger number of classes are presented. We also introduced an `instance test' to classify very similar specific instances - a capability of animal cognition that is usually neglected in ML. We selected representative baseline models from the original CFSL work and compared to a model with Hippocampal-inspired replay, as the Hippocampus is considered to be vital to this type of learning in animals. As expected, learning more classes is more difficult than the original CFSL experiments, and interestingly, the way in which they are presented makes a difference to performance. Accuracy in the instance test is comparable to the classification tasks. The use of replay for consolidation improves performance substantially for both types of tasks, particularly the instance test.


翻译:持续学习和少见的学习是改进机器学习的重要前沿。 每个前沿都有越来越多的工作,但很少结合两者。 但是,最近Antoniou 等人的arXiv:2004.11967 引入了一个连续少见的学习框架,即CFSL, 两者兼而有之。 在本研究中,我们扩展了CFSL, 使其更能与标准的持续学习实验相比, 通常提供较多的班级。 我们还引入了一个“强化测试”来分类非常相似的具体案例—— 动物认知能力在ML中通常被忽视。 我们从CFSL原始工作中选择了具有代表性的基线模型, 与Hippocampal启发性重玩的模式相比, 因为Hippocampus被认为对动物的这种学习类型至关重要。 正如预期的那样, 学习更多的班级比CFSL最初的实验更加困难, 有趣的是, 展示这些班级的方式会改变业绩。 实例测试的准确性与分类任务相似。 实例的精确性测试与分类任务相比, 使用重塑两种任务的测试。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月25日
Arxiv
12+阅读 · 2022年4月12日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员