Extensive research has been performed on continuous, non-invasive, cuffless blood pressure (BP) measurement using artificial intelligence algorithms. This approach involves extracting certain features from physiological signals like ECG, PPG, ICG, BCG, etc. as independent variables and extracting features from Arterial Blood Pressure (ABP) signals as dependent variables, and then using machine learning algorithms to develop a blood pressure estimation model based on these data. The greatest challenge of this field is the insufficient accuracy of estimation models. This paper proposes a novel blood pressure estimation method with a clustering step for accuracy improvement. The proposed method involves extracting Pulse Transit Time (PTT), PPG Intensity Ratio (PIR), and Heart Rate (HR) features from Electrocardiogram (ECG) and Photoplethysmogram (PPG) signals as the inputs of clustering and regression, extracting Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) features from ABP signals as dependent variables, and finally developing regression models by applying Gradient Boosting Regression (GBR), Random Forest Regression (RFR), and Multilayer Perceptron Regression (MLP) on each cluster. The method was implemented using the MIMICII dataset with the silhouette criterion used to determine the optimal number of clusters. The results showed that because of the inconsistency, high dispersion, and multi-trend behavior of the extracted features vectors, the accuracy can be significantly improved by running a clustering algorithm and then developing a regression model on each cluster, and finally weighted averaging of the results based on the error of each cluster. When implemented with 5 clusters and GBR, this approach yielded an MAE of 2.56 for SBP estimates and 2.23 for DBP estimates, which were significantly better than the best results without clustering (DBP: 6.27, SBP: 6.36).


翻译:使用人工智能算法对连续、非侵入、无袖的血压(BP)测量进行了广泛研究,采用人工智能算法对连续、非侵入、无袖的血压(BP)测量进行广泛研究,这种方法包括从诸如ECG、PPG、ICG、CBG等生理信号中提取某些特征,作为独立的变量,从血管血压(ABP)信号中提取特征,作为依赖变量,然后使用机器学习算法来开发基于这些数据的血压估计模型。该领域的最大挑战是估算模型的准确性不足。本文件提出一种新的血压估计方法,并采用一个组合步骤来提高准确性。 提议的方法包括提取脉冲流转时间(PTT)、PGPG加速加速度比率(PIR),以及心脏速率(HR)等特征,作为组合和回归值输入的血压(SBBBM 数据) 和血压(DBF ) 数据流压(DBBS ) 和血压(D) 血压(DBBD) 模型的精确性计算结果,在使用每组中,在SBBBRBS 和BS 的流流流流流的每组中可以大幅递增压(BR) 数据中, 使用一个最精确值数据, 和最精确的计算方法,在每组中,在S-RBBBBS 显示的每次采用最精确性计算方法,在S-BR) 和最精确性计算方法,在每次进行。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2021年10月22日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员