We have recently proposed two pile loading controllers that learn from human demonstrations: a neural network (NNet) [1] and a random forest (RF) controller [2]. In the field experiments the RF controller obtained clearly better success rates. In this work, the previous findings are drastically revised by experimenting summer time trained controllers in winter conditions. The winter experiments revealed a need for additional sensors, more training data, and a controller that can take advantage of these. Therefore, we propose a revised neural controller (NNetV2) which has a more expressive structure and uses a neural attention mechanism to focus on important parts of the sensor and control signals. Using the same data and sensors to train and test the three controllers, NNetV2 achieves better robustness against drastically changing conditions and superior success rate. To the best of our knowledge, this is the first work testing a learning-based controller for a heavy-duty machine in drastically varying outdoor conditions and delivering high success rate in winter, being trained in summer.
翻译:我们最近提议了两个从人类演示中学习的堆积式装载控制器:神经网络[1]和随机森林控制器[2]。在实地实验中,RF控制器取得了明显更好的成功率。在这项工作中,通过在冬季条件下试验经培训的夏季控制器,对先前的调查结果进行了大幅度修改。冬季实验显示,需要更多的传感器、更多的培训数据以及能够利用这些数据的控制器。因此,我们提议了一个新的神经控制器(NNetV2),它具有更直观的结构,并使用神经关注机制来关注传感器和控制信号的重要部分。利用同样的数据和传感器来培训和测试这三名控制器,NNetV2在急剧变化的条件和超高成功率方面实现了更强的稳健性。据我们所知,这是首次在极不同的户外条件下测试一个重型机器的学习控制器,并在冬季提供高成功率,这是在夏季受训的。