Isoforms are mRNAs produced from the same gene site in the phenomenon called Alternative Splicing. Studies have shown that more than 95% of human multi-exon genes have undergone alternative splicing. Although there are few changes in mRNA sequence, They may have a systematic effect on cell function and regulation. It is widely reported that isoforms of a gene have distinct or even contrasting functions. Most studies have shown that alternative splicing plays a significant role in human health and disease. Despite the wide range of gene function studies, there is little information about isoforms' functionalities. Recently, some computational methods based on Multiple Instance Learning have been proposed to predict isoform function using gene function and gene expression profile. However, their performance is not desirable due to the lack of labeled training data. In addition, probabilistic models such as Conditional Random Field (CRF) have been used to model the relation between isoforms. This project uses all the data and valuable information such as isoform sequences, expression profiles, and gene ontology graphs and proposes a comprehensive model based on Deep Neural Networks. The UniProt Gene Ontology (GO) database is used as a standard reference for gene functions. The NCBI RefSeq database is used for extracting gene and isoform sequences, and the NCBI SRA database is used for expression profile data. Metrics such as Receiver Operating Characteristic Area Under the Curve (ROC AUC) and Precision-Recall Under the Curve (PR AUC) are used to measure the prediction accuracy.


翻译:Isoforms 是来自同一基因站点的 mRNA 。 研究显示, 95%以上的人类多外基因都经过了替代的复制。 虽然 mRNA 序列中的变化不多, 但它们可能对细胞功能和调控产生系统性影响。 广泛报道基因的异形具有不同或甚至对比功能。 大多数研究表明, 替代的复制在人类健康和疾病中起着重要作用 。 尽管基因功能研究范围很广, 但关于异形功能的信息很少。 最近, 以多例精度学习为基础的一些计算方法已经建议使用基因功能和基因表达式配置来预测异形功能。 但是, 由于缺乏标签化的培训数据, 它们的性能并不理想。 此外, 诸如 Conditional 随机场( CRFRF) 等概率模型被用于模拟等色谱之间的关系 。 这个项目使用所有的数据和有价值的信息, 比如, 等异义序列、 表达剖面图, 以多例性剖析图图为基础, 并提议一个基于 深层内基的直径系统数据库 。 使用SProcrecurial Creal Creal 数据库 。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年10月2日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员