In this paper, we present a transcribed corpus of the LIBE committee of the EU parliament, totalling 3.6 Million running words. The meetings of parliamentary committees of the EU are a potentially valuable source of information for political scientists but the data is not readily available because only disclosed as speech recordings together with limited metadata. The meetings are in English, partly spoken by non-native speakers, and partly spoken by interpreters. We investigated the most appropriate Automatic Speech Recognition (ASR) model to create an accurate text transcription of the audio recordings of the meetings in order to make their content available for research and analysis. We focused on the unsupervised domain adaptation of the ASR pipeline. Building on the transformer-based Wav2vec2.0 model, we experimented with multiple acoustic models, language models and the addition of domain-specific terms. We found that a domain-specific acoustic model and a domain-specific language model give substantial improvements to the ASR output, reducing the word error rate (WER) from 28.22 to 17.95. The use of domain-specific terms in the decoding stage did not have a positive effect on the quality of the ASR in terms of WER. Initial topic modelling results indicated that the corpus is useful for downstream analysis tasks. We release the resulting corpus and our analysis pipeline for future research.


翻译:在本文中,我们介绍了一个由欧盟议会LIBE委员会组成的转录语料库,总计360万个单词。欧盟议会的委员会会议是政治学家的潜在有价值的信息来源,但由于只公开作为语音记录以及有限的元数据而无法立即获取数据。会议以英语进行,部分由非母语人士讲话,部分由口译员讲话。我们调查了建立准确的文本转录的最适当的自动语音识别(ASR)模型,以便使其内容可供研究和分析。我们专注于ASR流水线的无监督领域适应。基于基于转换器的Wav2vec2.0模型,我们尝试了多个声学模型,语言模型以及添加了特定领域术语。我们发现,特定领域的声学模型和特定领域的语言模型在ASR输出方面给出了实质性的改进,将字错率(WER)从28.22降至17.95。在解码阶段使用特定领域术语并没有对ASR的质量产生积极影响。初始主题模型结果表明,这个语料库对下游分析任务很有用。我们发布了结果语料库和我们的分析流程以供未来研究使用。

0
下载
关闭预览

相关内容

语音识别是计算机科学和计算语言学的一个跨学科子领域,它发展了一些方法和技术,使计算机可以将口语识别和翻译成文本。 它也被称为自动语音识别(ASR),计算机语音识别或语音转文本(STT)。它整合了计算机科学,语言学和计算机工程领域的知识和研究。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
NLP Chinese Corpus:大规模中文自然语言处理语料
PaperWeekly
14+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月1日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
4+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员