Given a convex polyhedral surface P, we define a tailoring as excising from P a simple polygonal domain that contains one vertex v, and whose boundary can be sutured closed to a new convex polyhedron via Alexandrov's Gluing Theorem. In particular, a digon-tailoring cuts off from P a digon containing v, a subset of P bounded by two equal-length geodesic segments that share endpoints, and can then zip closed. In the first part of this monograph, we primarily study properties of the tailoring operation on convex polyhedra. We show that P can be reshaped to any polyhedral convex surface Q a subset of conv(P) by a sequence of tailorings. This investigation uncovered previously unexplored topics, including a notion of unfolding of Q onto P--cutting up Q into pieces pasted non-overlapping onto P. In the second part of this monograph, we study vertex-merging processes on convex polyhedra (each vertex-merge being in a sense the reverse of a digon-tailoring), creating embeddings of P into enlarged surfaces. We aim to produce non-overlapping polyhedral and planar unfoldings, which led us to develop an apparently new theory of convex sets, and of minimal length enclosing polygons, on convex polyhedra. All our theorem proofs are constructive, implying polynomial-time algorithms.
翻译:鉴于一个 convex 多元形表面 P, 我们定义一个裁剪为从 P 切开一个包含一个顶点 v 的简单多边形域, 其边界可以通过亚历山德罗的 Gluing 理论线将P 的 dicon- 裁剪从一个包含 digoon 的 digoon 的 digoon 剪切从 P 的 digoon 的 digoon 剪裁从 P 的子集, P 由两个平长的大地段组成, 共同端点, 然后可以关闭 。 在此专论的第一部分, 我们主要研究 convex 聚希德拉 裁剪裁操作的属性。 我们显示P 可以通过裁剪裁序列将一个新的 convex 的 monvex 表面 Q Q 一组 conv。 本次调查发现, Q 到 P- Q Q 的演化成一个小片段, 与 P 相近的不重叠的 。 在这个专论的第二部分, 我们研究在 conhedrodal 上进行反向的校验进程,, 我们正在将一个不折的翻动的 直压的 直压的 直成一个方向的 。