A dominating set in a directed graph is a set of vertices $S$ such that all the vertices that do not belong to $S$ have an in-neighbour in $S$. A locating set $S$ is a set of vertices such that all the vertices that do not belong to $S$ are characterized uniquely by the in-neighbours they have in $S$, i.e. for every two vertices $u$ and $v$ that are not in $S$, there exists a vertex $s\in S$ that dominates exactly one of them. The size of a smallest set of a directed graph $D$ which is both locating and dominating is denoted by $\gamma^{LD}(D)$. Foucaud, Heydarshahi and Parreau proved that any twin-free digraph $D$ satisfies $\gamma^{LD}(D)\leq \frac{4n} 5 +1$ but conjectured that this bound can be lowered to $\frac{2n} 3$. The conjecture is still open. They also proved that if $D$ is a tournament, i.e. a directed graph where there is one arc between every pair of vertices, then $\gamma^{LD}(D)\leq \lceil \frac{n}{2}\rceil$. The main result of this paper is the generalization of this bound to connected local tournaments, i.e. connected digraphs where the in- and out-neighbourhoods of every vertex induce a tournament. We also prove $\gamma^{LD}(D)\leq \frac{2n} 3$ for all quasi-twin-free digraphs $D$ that admit a supervising vertex (a vertex from which any vertex is reachable). This class of digraphs generalizes twin-free acyclic graphs, the most general class for which this bound was known.
翻译:方向图形中的标定值是一组 $S 美元, 使所有不属于 $S 的顶点, 美元 。 定位 $S 是一套顶点, 这样所有 不属于 $S 的顶点都具有独特的特征, 也就是说, 每两个顶点 美元, 也就是说, 每两个顶点 美元, 美元 美元, 美元 美元, 美元, 所有的顶点, 美元 。 这个顶点, 美元 完全支配其中之一 。 一个最小的 指点点 美元, 它的大小 由 $gamma=LD 表示 。 福考德、 海达尔沙和帕雷奥 普通 证明, 任何双面 美元 美元, 美元 (D) 或 美元 美元 美元, 5+1 美元 。 这个顶点的顶点是, 它的底端点也可以被 美元 。