For a partition of $[0,1]$ into intervals $I_1,\ldots,I_n$ we prove the existence of a partition of $\mathbb{Z}$ into $\Lambda_1,\ldots, \Lambda_n$ such that the complex exponential functions with frequencies in $ \Lambda_k$ form a Riesz basis for $L^2(I_k)$, and furthermore, that for any $J\subseteq\{1,\,2,\,\dots,\,n\}$, the exponential functions with frequencies in $ \bigcup_{j\in J}\Lambda_j$ form a Riesz basis for $L^2(I)$ for any interval $I$ with length $|I|=\sum_{j\in J}|I_j|$. The construction extends to infinite partitions of $[0,1]$, but with size limitations on the subsets $J\subseteq \mathbb{Z}$; it combines the ergodic properties of subsequences of $\mathbb{Z}$ known as Beatty-Fraenkel sequences with a theorem of Avdonin on exponential Riesz bases.
翻译:对于 $0,1美元 的间隔区划 $1,\\\ldots,I_n美元,我们证明存在美元=mathbbb+$的分区, 美元=Lambda_1,\ldots,\Lambda_n$, 这样频率为$\Lambda_k$的复合指数函数形成Riesz基数, 美元=2(I_k)美元, 美元=2, I_k)美元; 此外, 对于任何美元=Subseteq%1,\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\nn\, 美元, 以 美元=Lambda_j$的频率构成Riesz基数, 美元=2(I)美元=Lambda_k$, 美元=Riesz 美元。 美元=j_j____美元。 建筑扩展至 $0, $1, $1美元, 但范围限制 $\ regodiscres askeys asin asmasin asmasmask.