We propose and study a class of rearrangement problems under a novel pick-n-swap prehensile manipulation model, in which a robotic manipulator, capable of carrying an item and making item swaps, is tasked to sort items stored in lattices of variable dimensions in a time-optimal manner. We systematically analyze the intrinsic optimality structure, which is fairly rich and intriguing, under different levels of item distinguishability (fully labeled, where each item has a unique label, or partially labeled, where multiple items may be of the same type) and different lattice dimensions. Focusing on the most practical setting of one and two dimensions, we develop low polynomial time cycle-following based algorithms that optimally perform rearrangements on 1D lattices under both fully- and partially-labeled settings. On the other hand, we show that rearrangement on 2D and higher dimensional lattices becomes computationally intractable to optimally solve. Despite their NP-hardness, we prove that efficient cycle-following based algorithms remain asymptotically optimal for 2D fully- and partially-labeled settings, in expectation, using the interesting fact that random permutations induce only a small number of cycles. We further improve these algorithms to provide 1.x-optimality when the number of items is small. Simulation studies corroborate the effectiveness of our algorithms.


翻译:我们建议并研究一种在新型的Pick-n-swap先质操纵模型下重新排列问题的类别,在这个模型中,一个机器人操纵器,能够携带一个项目并进行项目交换,负责以最优的时间-最佳的方式对存储于变量维度层的物品进行分类;我们系统地分析内在最佳性结构,这种结构相当丰富和令人着迷,在不同的项目可辨度水平下(完全贴上标签,每个项目都有独特的标签,或部分贴上标签,其中多个项目可能属于同一类型)和不同的装饰维度。我们注重一个和两个维度的最实用设置,我们开发了基于低多边时间周期的运行算法,在完全和部分贴上标签的环境下,以最佳的方式对1D楼层进行优化的重新排列。另一方面,我们显示2D楼和更高楼层的重新排列在计算方法上变得难以最优化。尽管它们具有NP-硬性,但我们证明基于周期的高效算法仍然以一个和两个维度两个维度的设置,我们开发了基于低度周期周期周期的低度周期周期周期的算法,基于算法的算法,以最优化的算算法基础的算算算法在完全和部分的精细的逻辑上,我们只能对2D的精细的精细的精细的算算算算算数进行。我们只是的精细的精细的精细的精细的精细的精细的精细的精细的算的算的算法研究中,这些算的算数是用来使的精细的精细的精细的精细。

0
下载
关闭预览

相关内容

专知会员服务
55+阅读 · 2021年6月30日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年8月11日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
55+阅读 · 2021年6月30日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员