In this paper, we first devise two algorithms to determine whether or not a bimatrix game has a strategically equivalent zero-sum game. If so, we propose an algorithm that computes the strategically equivalent zero-sum game. If a given bimatrix game is not strategically equivalent to a zero-sum game, we then propose an approach to compute a zero-sum game whose saddle-point equilibrium can be mapped to a well-supported approximate Nash equilibrium of the original game. We conduct extensive numerical simulation to establish the efficacy of the two algorithms.
翻译:在本文中, 我们首先设计两种算法, 以确定一个比马特基游戏是否具有一个战略等效零和游戏。 如果是这样, 我们建议一种计算战略等效零和游戏的算法。 如果一个给定的比马特基游戏在战略上不等同于零和游戏, 那么我们建议一种计算零和游戏的方法, 其马鞍点平衡可以映射为原始游戏中一个得到良好支持的近似纳什平衡。 我们进行广泛的数字模拟, 以确定两种算法的功效 。