In this paper we propose a high-order numerical scheme for linear Fokker-Planck equations with a constant diffusion term. The scheme, which is built by combining Lagrange-Galerkin and semi-Lagrangian techniques, is explicit, conservative, consistent, and stable for large time steps compared with the space steps. We provide a convergence analysis for the exactly integrated Lagrange-Galerkin scheme, and we propose an implementable version with inexact integration. Our main application is the construction of a high-order scheme to approximate solutions of time dependent mean field games systems.
翻译:在本文中,我们为线性Fokker-Planck等式提出了一个具有恒定扩散术语的高阶数字方案。这个方案是结合Lagrange-Galerkin和半Lagrangian技术建立的,它明确、保守、一致,并且与空间步骤相比在很长的时间内保持稳定。我们为完全一体化的Lagrange-Galerkin方案提供了趋同分析,我们提出了一个不精确整合的可执行版本。我们的主要应用是构建一个高阶方案,以大致解决时间依赖的普通野外游戏系统。