We study the Conjugate Kernel associated to a multi-layer linear-width feed-forward neural network with random weights, biases and data. We show that the empirical spectral distribution of the Conjugate Kernel converges to a deterministic limit. More precisely we obtain a deterministic equivalent for its Stieltjes transform and its resolvent, with quantitative bounds involving both the dimension and the spectral parameter. The limiting equivalent objects are described by iterating free convolution of measures and classical matrix operations involving the parameters of the model.
翻译:暂无翻译