In this paper we develop a numerical method for efficiently approximating solutions of certain Zakai equations in high dimensions. The key idea is to transform a given Zakai SPDE into a PDE with random coefficients. We show that under suitable regularity assumptions on the coefficients of the Zakai equation the corresponding random PDE admits a solution random field which, conditionally on the random coefficients, can be written as a classical solution of a second order linear parabolic PDE. This makes it possible to apply the Feynman--Kac formula to obtain an efficient Monte Carlo scheme for computing approximate solutions of Zakai equations. The approach achieves good results in up to 100 dimensions with fast run times.
翻译:在本文中,我们开发了高效接近高维Zakai等方程式的解决方案的数字方法。 关键的想法是将给定的Zakai SPDE转换成带有随机系数的PDE。 我们显示,在对Zakai等方程式系数的适当常规假设下,相应的随机PDE会接受一个随机的解决方案字段,该字段以随机系数为条件,可以写成第二个顺序线性线性PDE的经典解决方案。 这使得可以应用 Feynman- Kac 公式来获取一个高效的蒙特卡洛方案,用于计算Zakai等方程式的近似解决方案。 这种方法在100个维的快速运行时间中取得了良好效果 。