Knowledge graphs (KGs), as a structured form of knowledge representation, have been widely applied in the real world. Recently, few-shot knowledge graph completion (FKGC), which aims to predict missing facts for unseen relations with few-shot associated facts, has attracted increasing attention from practitioners and researchers. However, existing FKGC methods are based on metric learning or meta-learning, which often suffer from the out-of-distribution and overfitting problems. Meanwhile, they are incompetent at estimating uncertainties in predictions, which is critically important as model predictions could be very unreliable in few-shot settings. Furthermore, most of them cannot handle complex relations and ignore path information in KGs, which largely limits their performance. In this paper, we propose a normalizing flow-based neural process for few-shot knowledge graph completion (NP-FKGC). Specifically, we unify normalizing flows and neural processes to model a complex distribution of KG completion functions. This offers a novel way to predict facts for few-shot relations while estimating the uncertainty. Then, we propose a stochastic ManifoldE decoder to incorporate the neural process and handle complex relations in few-shot settings. To further improve performance, we introduce an attentive relation path-based graph neural network to capture path information in KGs. Extensive experiments on three public datasets demonstrate that our method significantly outperforms the existing FKGC methods and achieves state-of-the-art performance. Code is available at https://github.com/RManLuo/NP-FKGC.git.


翻译:知识图谱(KGs)作为一种结构化的知识表示形式,在现实世界中被广泛应用。近年来,少样本知识图谱补全(FKGC)引起了从业者和研究人员的广泛关注,其旨在使用少量关联事实来预测未见关系的缺失事实。然而,现有的FKGC方法基于度量学习或元学习,往往存在离分布和过拟合问题。同时,它们无法估计预测中的不确定性,这是极其重要的,因为在少样本设置中模型的预测可能非常不可靠。此外,大多数方法无法处理复杂关系并忽略KGs中的路径信息,这在很大程度上限制了它们的性能。在本文中,我们提出了一种基于正则化流的神经网络过程,用于少样本知识图谱补全(NP-FKGC)。具体而言,我们将正则化流和神经过程统一起来,以建模KG完成函数的复杂分布。这提供了一种新颖的方法来预测少样本关系的事实同时估计不确定性。然后,我们提出了一种随机ManifoldE解码器来融合神经过程和处理少样本关系的复杂关系。为了进一步提高性能,我们引入了基于关系路径的图神经网络以捕获KG中的路径信息。在三个公共数据集上的大量实验证明了我们的方法明显优于现有的FKGC方法,并实现了最先进的性能。代码可在https://github.com/RManLuo/NP-FKGC.git获得。

1
下载
关闭预览

相关内容

论文浅尝 | Continual Learning for Named Entity Recognition
开放知识图谱
1+阅读 · 2022年6月25日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
20+阅读 · 2019年9月7日
VIP会员
相关VIP内容
相关资讯
论文浅尝 | Continual Learning for Named Entity Recognition
开放知识图谱
1+阅读 · 2022年6月25日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
相关论文
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
20+阅读 · 2019年9月7日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员