Identifying anomalies refers to detecting samples that do not resemble the training data distribution. Many generative models have been used to find anomalies, and among them, generative adversarial network (GAN)-based approaches are currently very popular. GANs mainly rely on the rich contextual information of these models to identify the actual training distribution. Following this analogy, we suggested a new unsupervised model based on GANs --a combination of an autoencoder and a GAN. Further, a new scoring function was introduced to target anomalies where a linear combination of the internal representation of the discriminator and the generator's visual representation, plus the encoded representation of the autoencoder, come together to define the proposed anomaly score. The model was further evaluated on benchmark datasets such as SVHN, CIFAR10, and MNIST, as well as a public medical dataset of leukemia images. In all the experiments, our model outperformed its existing counterparts while slightly improving the inference time.
翻译:识别异常是指检测与培训数据分布不相像的样本。许多基因模型被用于发现异常现象,其中,基于基因对抗网络(GAN)的方法目前非常流行。GAN主要依靠这些模型的丰富背景信息来确定实际培训分布。根据这个类比,我们建议了一个新的不受监督的模型,其基础是GANs -- -- 一个自动编码器和一个GAN的组合。此外,还引入了一个新的评分功能,以针对异常现象为目标,在这些异常现象中,将歧视者的内部表现和发电机的视觉表现进行线性组合,加上自动编码的显示,共同确定拟议的异常得分。该模型还进一步评估了SVHN、CIFAR10和MNIST等基准数据集,以及白血病图像的公开医疗数据集。在所有实验中,我们的模型在稍微改进推断时间的同时,超越了现有的对应数据。