Change detection (CD) of remote sensing images is to detect the change region by analyzing the difference between two bitemporal images. It is extensively used in land resource planning, natural hazards monitoring and other fields. In our study, we propose a novel Siamese neural network for change detection task, namely Dual-UNet. In contrast to previous individually encoded the bitemporal images, we design an encoder differential-attention module to focus on the spatial difference relationships of pixels. In order to improve the generalization of networks, it computes the attention weights between any pixels between bitemporal images and uses them to engender more discriminating features. In order to improve the feature fusion and avoid gradient vanishing, multi-scale weighted variance map fusion strategy is proposed in the decoding stage. Experiments demonstrate that the proposed approach consistently outperforms the most advanced methods on popular seasonal change detection datasets.
翻译:遥感图像的变化探测(CD)是通过分析两张时空图像之间的差别来探测变化区域。 它被广泛用于土地资源规划、自然危害监测和其他领域。 在研究中, 我们提议建立一个新型的暹粒神经网络来进行变化探测任务, 即双重UNet。 与先前对咬时图像进行单独编码相比, 我们设计了一个编码差异感应模块, 以关注像素的空间差异关系。 为了改进网络的总体化, 它计算了咬时图像之间任何像素之间的注意重量, 并使用它们来产生更多的区别性特征。 为了改进特征聚合, 避免梯度消失, 在解码阶段提出了多尺度的加权变形地图融合战略。 实验显示, 拟议的方法始终超越流行季节变化探测数据集的最先进的方法。