We argue that in microeconometric applications, just-identified instrumental variables (IV) estimators are virtually unbiased and the usual inference strategies are likely adequate. Confidence interval undercoverage exceeds 5% only for endogeneity beyond that seen even when IV and OLS estimates differ by an order of magnitude. Three widely-cited applications are used to explain why endogeneity is likely low enough for IV estimates to be reliable. IV identification typically implies a first-stage sign restriction; most analysts probably screen their estimates accordingly. We show that screening on the estimated first stage sign halves median bias of conventional IV without reducing coverage.
翻译:我们争论说,在微计量应用中,仅仅确定的工具变量(IV)估计值几乎是没有偏见的,通常的推论策略是充分的;即使IV和OSLS的估计数因规模不同而不同,但信任间隔期的间隔率却超过5%,超过所见程度;有三个广泛引用的应用用于解释为什么内源性可能很低,使IV的估计数是可靠的。 IV的鉴别通常意味着第一阶段的标志限制;大多数分析家可能据此筛选其估计值。 我们表明,在估计的第一阶段的筛选显示,常规四的中位偏差在不减少覆盖率的情况下将中位偏差减半。