Reliable multi-agent trajectory prediction is crucial for the safe planning and control of autonomous systems. Compared with single-agent cases, the major challenge in simultaneously processing multiple agents lies in modeling complex social interactions caused by various driving intentions and road conditions. Previous methods typically leverage graph-based message propagation or attention mechanism to encapsulate such interactions in the format of marginal probabilistic distributions. However, it is inherently sub-optimal. In this paper, we propose IPCC-TP, a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling. IPCC-TP learns pairwise joint Gaussian Distributions through the tightly-coupled estimation of the means and covariances according to interactive incremental movements. Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders. Extensive experiments on nuScenes and Argoverse 2 datasets demonstrate that IPCC-TP improves the performance of baselines by a large margin.
翻译:可靠的多试剂轨迹预测对于自主系统的安全规划和控制至关重要。与单一试剂案例相比,同时处理多种剂的主要挑战在于模拟由各种驱动意图和道路条件造成的复杂社会互动。以往的方法通常利用基于图形的信息传播或关注机制,将这种互动封装在边际概率分布模式中。然而,它本质上是次优的。我们在本文件中提议气专委-TP,这是一个以递增皮尔逊关系关联效率为基础的、具有新颖相关性的模块,目的是改进多试剂互动模型。气专委-TP通过根据交互递增运动对各种手段和共变体进行紧密结合的估算,学习了对称联合高斯分布。我们的模块可以方便地嵌入现有的多试剂预测方法,以扩展原始运动分布分解器。关于核流和Argovers 2数据集的广泛实验表明,气专委-TP将基线的性能提高很大幅度。</s>