This work proposes a dynamic and adversarial resource allocation problem in a graph environment, which is referred to as the dynamic Defender-Attacker Blotto (dDAB) game. A team of defender robots is tasked to ensure numerical advantage at every node in the graph against a team of attacker robots. The engagement is formulated as a discrete-time dynamic game, where the two teams reallocate their robots in sequence and each robot can move at most one hop at each time step. The game terminates with the attacker's victory if any node has more attacker robots than defender robots. Our goal is to identify the necessary and sufficient number of defender robots to guarantee defense. Through a reachability analysis, we first solve the problem for the case where the attacker team stays as a single group. The results are then generalized to the case where the attacker team can freely split and merge into subteams. Crucially, our analysis indicates that there is no incentive for the attacker team to split, which significantly reduces the search space for the attacker's winning strategies and also enables us to design defender counter-strategies using superposition. We also present an efficient numerical algorithm to identify the necessary and sufficient number of defender robots to defend a given graph. Finally, we present illustrative examples to verify the efficacy of the proposed framework.


翻译:本文提出了一种在图形环境下的动态对抗资源分配问题,称为动态防御者-攻击者布劳图(dDAB)游戏。一队防御机器人的任务是确保在图中每个节点都具有数值优势,以对抗一队攻击机器人。这个对抗冲突被构想成一个离散时间动态博弈,两支队伍轮流重新分配其机器人,并且每个机器人每次只能移动一次跳跃。如果任何一个节点上攻击机器人的数量多于防御机器人,这个游戏将以攻击者获胜而结束。我们的目标是确定保障防御所需要的匹配机器人数量是多少。通过到达性分析,我们首先解决了攻击队伍保持为单一组的情况。然后将结果推广到攻击队伍可以自由划分和合并为子队伍的情况下。至关重要的是,我们的分析表明,攻击队伍没有分裂的动机,这显着减小了攻击者获胜策略的搜索空间,并使我们能够使用叠加设计防御者的反制策略。我们还提出了一种高效的数值算法来确定保护给定图形所需的匹配防御机器人最小数量。最后,我们提供了说明性的例子来验证所提出的框架的有效性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
82+阅读 · 2022年7月16日
Arxiv
29+阅读 · 2021年11月2日
Arxiv
12+阅读 · 2020年12月10日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员