Photo retouching is a difficult task for novice users as it requires expert knowledge and advanced tools. Photographers often spend a great deal of time generating high-quality retouched photos with intricate details. In this paper, we introduce a one-shot learning based technique to automatically retouch details of an input image based on just a single pair of before and after example images. Our approach provides accurate and generalizable detail edit transfer to new images. We achieve these by proposing a new representation for image to image maps. Specifically, we propose neural field based transformation blending in the patch space for defining patch to patch transformations for each frequency band. This parametrization of the map with anchor transformations and associated weights, and spatio-spectral localized patches, allows us to capture details well while staying generalizable. We evaluate our technique both on known ground truth filters and artist retouching edits. Our method accurately transfers complex detail retouching edits.
翻译:照片修饰对于初学者来说是一项艰巨的任务,因为它需要专业知识和先进的工具。摄影师通常会花费大量时间生成高质量的修饰照片,其中包括复杂的细节。本文介绍了一种基于一次性学习的技术,可以根据一个 before 和 after 的示例图像对自动修饰输入图像的细节。我们的方法提供了精确且通用的细节编辑转移至新图像的方法。我们通过提出一种新的映射图像的表示方法来实现这些目标。具体来说,我们提出了基于神经场的变换融合以在贴图空间中定义每个频带的贴图变换。这种以锚点变换和相关权重以及空间光谱局部贴图为参数的映射参数化允许我们很好地捕捉细节同时保持通用性。我们在已知的真实过滤器和艺术家修饰的编辑上评估了我们的技术。我们的方法可以准确地转移复杂的细节修饰。