Most models of visual attention are aimed at predicting either top-down or bottom-up control, as studied using different visual search and free-viewing tasks. We propose Human Attention Transformer (HAT), a single model predicting both forms of attention control. HAT is the new state-of-the-art (SOTA) in predicting the scanpath of fixations made during target-present and target-absent search, and matches or exceeds SOTA in the prediction of taskless free-viewing fixation scanpaths. HAT achieves this new SOTA by using a novel transformer-based architecture and a simplified foveated retina that collectively create a spatio-temporal awareness akin to the dynamic visual working memory of humans. Unlike previous methods that rely on a coarse grid of fixation cells and experience information loss due to fixation discretization, HAT features a dense-prediction architecture and outputs a dense heatmap for each fixation, thus avoiding discretizing fixations. HAT sets a new standard in computational attention, which emphasizes both effectiveness and generality. HAT's demonstrated scope and applicability will likely inspire the development of new attention models that can better predict human behavior in various attention-demanding scenarios.
翻译:大多数视觉注意力模型旨在预测自顶向下或自底向上控制,使用不同的视觉搜索和随意查看任务进行研究。我们提出了Human Attention Transformer (HAT),这是一个单一的模型,预测两种形式的注意力控制。HAT是预测目标存在和目标不存在搜索期间所做的注视扫描路径的新的最先进技术 (SOTA),并且匹配或超过在无任务的自由观看扫描路径预测方面的SOTA。HAT通过使用一种新颖的基于转换器的架构和简化的凹形视网膜,共同创造了一种类似于人类动态视觉工作记忆的时空意识,从而实现了这种新的SOTA。与先前依赖于用于注视离散化的粗网格的方法不同,HAT具有密集的预测架构,并为每个注视输出密集的热图,从而避免了注视离散化所带来的信息损失。HAT树立了计算注意力的新标准,强调效果和广泛性。HAT的展示范围和适用性可能会激发开发新的注意力模型,这些模型能够更好地预测各种注意力需求场景中的人类行为。