Multispectral image fusion is a fundamental problem of remote sensing and image processing. This problem is addressed by both classic and deep learning approaches. This paper is focused on the classic solutions and introduces a new novel approach to this family. The proposed method carries out multispectral image fusion based on the content of the fused images. It relies on analysis based on the level of information on segmented superpixels in the fused inputs. Specifically, I address the task of visible color RGB to Near-Infrared (NIR) fusion. The RGB image captures the color of the scene while the NIR captures details and sees beyond haze and clouds. Since each channel senses different information of the scene, their fusion is challenging and interesting. The proposed method is designed to produce a fusion that contains both advantages of each spectra. This manuscript experiments show that the proposed method is visually informative with respect to other classic fusion methods which can be run fastly on embedded devices with no need for heavy computation resources.
翻译:多光谱图像聚合是遥感和图像处理的一个基本问题。 这个问题通过经典和深层次的学习方法加以解决。 本文侧重于经典解决方案, 并对这个家庭引入了新的新颖方法。 推荐的方法根据引信图像的内容进行多光谱图像聚合。 它依赖基于引信输入中分层超级像素信息水平的分析。 具体地说, 我处理的是可见颜色 RGB 至近红外( NIR) 融合的任务。 RGB 图像捕捉了场景的颜色, 而 NIR 捕捉到细节和观察范围超越烟雾和云层。 由于每个频道都感知到场景的不同信息, 它们的聚合是富有挑战性和有趣的。 推荐的方法旨在产生一个包含每个光谱两种优点的聚合。 这个手稿实验显示, 拟议的方法具有视觉信息, 与其他传统的聚变方法有关, 这些方法可以在嵌入装置上快速运行, 不需要重计算资源。