Domain shifts at test-time are inevitable in practice. Test-time adaptation addresses this problem by adapting the model during deployment. Recent work theoretically showed that self-training can be a strong method in the setting of gradual domain shifts. In this work we show the natural connection between gradual domain adaptation and test-time adaptation. We publish a new synthetic dataset called CarlaTTA that allows to explore gradual domain shifts during test-time and evaluate several methods in the area of unsupervised domain adaptation and test-time adaptation. We propose a new method GTTA that is based on self-training and style transfer. GTTA explicitly exploits gradual domain shifts and sets a new standard in this area. We further demonstrate the effectiveness of our method on the continual and gradual CIFAR10C, CIFAR100C, and ImageNet-C benchmark.
翻译:试验时间的调整在实践中是不可避免的。试验时间的调整通过在部署期间调整模型来解决这个问题。最近的工作在理论上表明,自我培训可以成为逐步改变域变化的有力方法。在这个工作中,我们展示了逐步改变域变化与试验时间调整之间的自然联系。我们出版了一套新的合成数据集,名为CarlaTTA,它允许在试验时间探索逐步改变域变化,并评价在不受监督的改变域变化和试验时间适应领域的几种方法。我们提出了一种基于自我培训和风格转移的新方法。全球技术开发协会明确利用逐步改变域变化,并制定了这方面的新标准。我们还进一步展示了我们方法在不断和逐步的CIFAR10C、CIFAR100C和图像网络-C基准方面的有效性。