Test-time training provides a new approach solving the problem of domain shift. In its framework, a test-time training phase is inserted between training phase and test phase. During test-time training phase, usually parts of the model are updated with test sample(s). Then the updated model will be used in the test phase. However, utilizing test samples for test-time training has some limitations. Firstly, it will lead to overfitting to the test-time procedure thus hurt the performance on the main task. Besides, updating part of the model without changing other parts will induce a mismatch problem. Thus it is hard to perform better on the main task. To relieve above problems, we propose to use mixup in test-time training (MixTTT) which controls the change of model's parameters as well as completing the test-time procedure. We theoretically show its contribution in alleviating the mismatch problem of updated part and static part for the main task as a specific regularization effect for test-time training. MixTTT can be used as an add-on module in general test-time training based methods to further improve their performance. Experimental results show the effectiveness of our method.


翻译:测试时间培训提供了一种解决域变问题的新方法。 在其框架内, 在培训阶段和测试阶段之间插入一个测试时间培训阶段。 在测试时间培训阶段, 通常将模型的部分部分与测试样品更新。 然后, 更新的模型将在测试阶段使用。 但是, 将测试样本用于测试时间培训有一定的局限性。 首先, 它将导致过度适应测试时间程序, 从而损害主要任务的业绩。 此外, 更新部分模型而不改变其他部分将引起不匹配问题。 因此, 很难更好地完成主要任务。 为了缓解以上问题, 我们提议在测试时间培训中使用混合方法, 以控制模型参数的变化, 并完成测试时间程序。 我们理论上表明它有助于缓解主要任务中更新部分和静态部分的不匹配问题, 作为测试时间培训的具体规范效果。 MixTTT 可以作为基于一般测试时间培训方法的一个附加模块, 以进一步提高其性能。 实验结果显示我们的方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月9日
Arxiv
0+阅读 · 2022年11月8日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员