This paper studies user attributes in light of current concerns in the recommender system community: diversity, coverage, calibration, and data minimization. In experiments with a conventional context-aware recommender system that leverages side information, we show that user attributes do not always improve recommendation. Then, we demonstrate that user attributes can negatively impact diversity and coverage. Finally, we investigate the amount of information about users that ``survives'' from the training data into the recommendation lists produced by the recommender. This information is a weak signal that could in the future be exploited for calibration or studied further as a privacy leak.
翻译:本文根据推荐人系统当前关注的问题来研究用户属性: 多样性、 覆盖面、 校准和数据最小化。 在与传统的背景意识推荐人系统进行实验时, 我们发现用户属性并不总能改善建议。 然后, 我们证明用户属性可能对多样性和覆盖面产生消极影响。 最后, 我们调查推荐人编制的推荐人建议列表中“ 生存者” 的用户信息数量。 这些信息是一个薄弱的信号, 将来可以用作校准, 或者作为隐私泄漏进一步研究。