Contrastive learning techniques have been widely used in the field of computer vision as a means of augmenting datasets. In this paper, we extend the use of these contrastive learning embeddings to sentiment analysis tasks and demonstrate that fine-tuning on these embeddings provides an improvement over fine-tuning on BERT-based embeddings to achieve higher benchmarks on the task of sentiment analysis when evaluated on the DynaSent dataset. We also explore how our fine-tuned models perform on cross-domain benchmark datasets. Additionally, we explore upsampling techniques to achieve a more balanced class distribution to make further improvements on our benchmark tasks.


翻译:计算机视觉领域广泛采用反向学习技术,作为增强数据集的手段。在本文中,我们将这些对比式学习嵌入方法推广到情感分析任务,并表明对这些嵌入方法的微调比对基于BERT的嵌入方法的微调有所改进,以便在评价DynSent数据集时,对情绪分析任务达到更高的基准。我们还探索我们的微调模型如何在跨域基准数据集上发挥作用。此外,我们探索升级技术,以实现更平衡的班级分布,从而进一步改进我们的基准任务。

1
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
对比学习(Contrastive Learning)相关进展梳理
PaperWeekly
10+阅读 · 2020年5月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
5+阅读 · 2020年10月21日
Arxiv
5+阅读 · 2020年10月2日
Arxiv
7+阅读 · 2020年8月7日
Arxiv
5+阅读 · 2018年6月4日
VIP会员
相关资讯
对比学习(Contrastive Learning)相关进展梳理
PaperWeekly
10+阅读 · 2020年5月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员