We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs. The method is closely related to the classic Relative Entropy Policy Search (REPS) algorithm of Peters et al. (2010), with the key difference that our method introduces a Q-function that enables efficient exact model-free implementation. The main feature of our algorithm (called QREPS) is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error. We provide a practical saddle-point optimization method for minimizing this loss function and provide an error-propagation analysis that relates the quality of the individual updates to the performance of the output policy. Finally, we demonstrate the effectiveness of our method on a range of benchmark problems.


翻译:我们建议采用新的强化学习算法,这种算法来自对MDPs最佳控制进行正规化线性线性方案设计。这种方法与Peters等人(2010年)的经典相对肠道政策搜索算法(REPS)密切相关,关键区别在于我们的方法引入了能够高效、完全无模型执行的Q功能。我们的算法(称为QREPS)的主要特征是政策评价的螺旋损失函数,它是一种理论上合理的替代广泛使用的平方贝尔曼错误的方法。我们为最大限度地减少这一损失功能提供了实用的支撑点优化方法,并提供了与单个更新的质量与产出政策绩效相联系的错误分析。最后,我们展示了我们在一系列基准问题上的方法的有效性。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
专知会员服务
53+阅读 · 2020年9月7日
【圣经书】《强化学习导论(2nd)》电子书与代码,548页pdf
专知会员服务
203+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习初探 - 从多臂老虎机问题说起
专知
10+阅读 · 2018年4月3日
Arxiv
0+阅读 · 2021年4月20日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
7+阅读 · 2018年12月26日
Learning to Importance Sample in Primary Sample Space
Arxiv
11+阅读 · 2018年4月25日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
专知会员服务
53+阅读 · 2020年9月7日
【圣经书】《强化学习导论(2nd)》电子书与代码,548页pdf
专知会员服务
203+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习初探 - 从多臂老虎机问题说起
专知
10+阅读 · 2018年4月3日
相关论文
Arxiv
0+阅读 · 2021年4月20日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
7+阅读 · 2018年12月26日
Learning to Importance Sample in Primary Sample Space
Arxiv
11+阅读 · 2018年4月25日
Arxiv
6+阅读 · 2018年4月24日
Arxiv
5+阅读 · 2018年4月22日
Top
微信扫码咨询专知VIP会员