The clique chromatic number of a graph is the minimum number of colours needed to colour its vertices so that no inclusion-wise maximal clique which is not an isolated vertex is monochromatic. We show that every graph of maximum degree $\Delta$ has clique chromatic number $O\left(\frac{\Delta}{\log~\Delta}\right)$. We obtain as a corollary that every $n$-vertex graph has clique chromatic number $O\left(\sqrt{\frac{n}{\log ~n}}\right)$. Both these results are tight.


翻译:图形的圆色色数是颜色颜色的最小值, 以便没有包含性最大分层, 而不是孤立的顶点是单色的。 我们显示, 每个最大度的 $\ Delta$ 的图形都有圆色数 $O\ left (\\ frac\ Delta\\ Delta\ log\\ Delta\\\ right) 。 我们得到的必然结果是, 每张 $n- vertex 的图形都有 $O\ left (\\ sqrt\ frac{ nunt\ log~ n\ right) 的分色数 。 这些结果都很紧凑 。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年9月27日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
还在修改博士论文?这份《博士论文写作技巧》为你指南
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月17日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月15日
VIP会员
相关VIP内容
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员