The clique chromatic number of a graph is the minimum number of colours needed to colour its vertices so that no inclusion-wise maximal clique which is not an isolated vertex is monochromatic. We show that every graph of maximum degree $\Delta$ has clique chromatic number $O\left(\frac{\Delta}{\log~\Delta}\right)$. We obtain as a corollary that every $n$-vertex graph has clique chromatic number $O\left(\sqrt{\frac{n}{\log ~n}}\right)$. Both these results are tight.
翻译:图形的圆色色数是颜色颜色的最小值, 以便没有包含性最大分层, 而不是孤立的顶点是单色的。 我们显示, 每个最大度的 $\ Delta$ 的图形都有圆色数 $O\ left (\\ frac\ Delta\\ Delta\ log\\ Delta\\\ right) 。 我们得到的必然结果是, 每张 $n- vertex 的图形都有 $O\ left (\\ sqrt\ frac{ nunt\ log~ n\ right) 的分色数 。 这些结果都很紧凑 。