In this study, a natural language processing-based (NLP-based) method is proposed for the sector-wise automatic classification of ad texts created on online advertising platforms. Our data set consists of approximately 21,000 labeled advertising texts from 12 different sectors. In the study, the Bidirectional Encoder Representations from Transformers (BERT) model, which is a transformer-based language model that is recently used in fields such as text classification in the natural language processing literature, was used. The classification efficiencies obtained using a pre-trained BERT model for the Turkish language are shown in detail.
翻译:在这项研究中,为在线广告平台上创建的广告文本的部门自动分类提出了一种以自然语言处理为基础的自然语言处理方法(基于语言处理法),我们的数据集由来自12个不同部门的大约21 000个标签广告文本组成,在该研究中,采用了基于变换器的双向编码演示模型,这是最近在诸如自然语言处理文献中的文本分类等领域中使用的一种基于变压器的语言模型,使用预先培训的土耳其语BERT模型获得的分类效率详细显示了。